CRC Handbook of Thermoelectrics
D. M. Rowe (Editor)

Description:
Thermoelectrics is the science and technology associated with thermoelectric converters, that is, the generation of electrical power by the Seebeck effect and refrigeration by the Peltier effect. Thermoelectric generators are being used in increasing numbers to provide electrical power in medical, military, and deep space applications where combinations of their desirable properties outweigh their relatively high cost and low generating efficiency. In recent years there also has been an increase in the requirement for thermoelectric coolers (Peltier devices) for use in infrared detectors and in optical communications. Information on thermoelectrics is not readily available as it is widely scattered throughout the literature. The Handbook centralizes this information in a convenient format under a single cover.

Sixty of the world's foremost authorities on thermoelectrics have contributed to this Handbook. It is comprised of fifty-five chapters, a number of which contain previously unpublished material. The contents are arranged in eight sections: general principles and theoretical considerations, material preparation, measurement of thermoelectric properties, thermoelectric materials, thermoelectric generation, generator applications, thermoelectric refrigeration, and applications of thermoelectric cooling.

The CRC Handbook of Thermoelectrics has a broad-based scope. It will interest researchers, technologists, and manufacturers, as well as students and the well-informed, non-specialist reader.

Table of Contents:
1 Introduction
2 Thermoelectric Phenomena
3 Conversion Efficiency and Figure-of-Merit
4 Thermoelectric Transport Theory
5 Optimization of Carrier Concentration
6 Minimizing the Thermal Conductivity
7 Selective Carrier Scattering in Thermoelectric Materials
8 Thermomagnetic Phenomena
9 Preparation of Thermoelectric Materials from Melts
10 Powder Metallurgy Techniques
11 PIES Method of Preparing Bismuth Alloys
12 Preparation of Thermoelectric Materials by Mechanical Alloying
13 Preparation of Thermoelectric Films
14 Calculation of Peltier Device Performance
15 Measurements of Electrical Properties
16 Measurement of Thermal Properties
17 Z-Meters
18 Methodology for Testing Thermoelectric Materials and Devices
19 Bismuth Telluride, Antimony Telluride, and Their Solid Solutions
20 Valence Band Structure and the Thermoelectric Figure-of-Merit of [actual symbol not reproducible] Te₂ Crystals
21 Lead Telluride and Its Alloys
22 Properties of the General TAGS System
23 Thermoelectric Properties of Silicides
24 Polycrystalline Iron Disilicide as a Thermoelectric Generator Material
25 Thermoelectric Properties of Anisotropic MnSi₁.₇₅
26 Low Carrier Mobility Materials for Thermoelectric Applications
27 Semimetals as Materials for Thermoelectric Generators
28 Silicon Germanium
29 Rare Earth Compounds
30 Thermoelectric Properties of High-Temperature Superconductors
31 Boron Carbides
32 Thermoelectric Properties of Metallic Materials
33 Neutron Irradiation Damage in SiGe Alloys
34 New Materials and Performance Limits for Thermoelectric Cooling
35 Miniature Semiconductor Thermoelectric Devices
36 Commercially Available Generators
37 Modular RTG Technology
38 Peltier Devices as Generators
39 Calculations of Generator Performance
40 Terrestrial Applications of Thermoelectric Generators
41 Space Applications
42 SP-100 Space Subsystems
43 Safety Aspects of Thermoelectrics in Space
44 Low-Temperature Heat Conversion
45 Thermoelectric Refrigeration: Introduction
46 Module Design and Fabrication
47 Cooling Thermoelements with Superconducting Leg
48 Applications of Thermoelectric Cooling: Introduction
49 Commercial Peltier Modules
50 Thermoelectrically Cooled Radiation Detectors
51 Reliability of Peltier Coolers in Fiber-Optic Laser Packages
52 Laboratory Equipment
53 Large-Scale Cooling: Integrated Thermoelectric Element Technology
54 Medium-Scale Cooling: Thermoelectric Module Technology
55 Modeling of Thermoelectric Cooling Systems

Index

Publication and Pricing:

ISBN: 0849301467

$120 at Amazon

Other recommended literature:

Thermoelectrics and its Energy Harvesting, 2-Volume Set: Modules, Systems, and Applications in Thermoelectrics by David Michael Rowe (Editor -2012)

Introduction to Thermoelectricity by H. Julian Goldsmid (2009)

Rethinking Thermoelectric Effects In Seebeck And Peltier Elements: Toward A Unifying Paradigm by Michael Spry (2013)

New Materials for Thermoelectric Applications: Theory and Experiment (2012) by Veljko Zlatic (Editor), Alex Hewson (Editor)

Thermoelectric Power of Metals by J. Blatt (2013)

Thermal & thermoelectric properties of low-dimensional semiconductors by Madhvendra Nath Tripathi (2013)

Thermoelectrics Handbook: Macro to Nano by D.M. Rowe (Editor - 2005)

Thermoelectric Refrigeration by H. Goldsmid (2013 reprint of the 1964 Classic)